3 research outputs found

    Algebraic technique for mixed least squares and total least squares problem in the reduced biquaternion algebra

    Full text link
    This paper presents the reduced biquaternion mixed least squares and total least squares (RBMTLS) method for solving an overdetermined system AXβ‰ˆBAX \approx B in the reduced biquaternion algebra. The RBMTLS method is suitable when matrix BB and a few columns of matrix AA contain errors. By examining real representations of reduced biquaternion matrices, we investigate the conditions for the existence and uniqueness of the real RBMTLS solution and derive an explicit expression for the real RBMTLS solution. The proposed technique covers two special cases: the reduced biquaternion total least squares (RBTLS) method and the reduced biquaternion least squares (RBLS) method. Furthermore, the developed method is also used to find the best approximate solution to AXβ‰ˆBAX \approx B over a complex field. Lastly, a numerical example is presented to support our findings.Comment: 19 pages, 3 figure

    Special least squares solutions of the reduced biquaternion matrix equation with applications

    Full text link
    This paper presents an efficient method for obtaining the least squares Hermitian solutions of the reduced biquaternion matrix equation (AXB,CXD)=(E,F)(AXB, CXD) = (E, F ). The method leverages the real representation of reduced biquaternion matrices. Furthermore, we establish the necessary and sufficient conditions for the existence and uniqueness of the Hermitian solution, along with a general expression for it. Notably, this approach differs from the one previously developed by Yuan et al. (2020)(2020), which relied on the complex representation of reduced biquaternion matrices. In contrast, our method exclusively employs real matrices and utilizes real arithmetic operations, resulting in enhanced efficiency. We also apply our developed framework to find the Hermitian solutions for the complex matrix equation (AXB,CXD)=(E,F)(AXB, CXD) = (E, F ), expanding its utility in addressing inverse problems. Specifically, we investigate its effectiveness in addressing partially described inverse eigenvalue problems. Finally, we provide numerical examples to demonstrate the effectiveness of our method and its superiority over the existing approach.Comment: 25 pages, 3 figure

    L-structure least squares solutions of reduced biquaternion matrix equations with applications

    Full text link
    This paper presents a framework for computing the structure-constrained least squares solutions to the generalized reduced biquaternion matrix equations (RBMEs). The investigation focuses on three different matrix equations: a linear matrix equation with multiple unknown L-structures, a linear matrix equation with one unknown L-structure, and the general coupled linear matrix equations with one unknown L-structure. Our approach leverages the complex representation of reduced biquaternion matrices. To showcase the versatility of the developed framework, we utilize it to find structure-constrained solutions for complex and real matrix equations, broadening its applicability to various inverse problems. Specifically, we explore its utility in addressing partially described inverse eigenvalue problems (PDIEPs) and generalized PDIEPs. Our study concludes with numerical examples.Comment: 30 page
    corecore